Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
One Health ; 16: 100536, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2297741

ABSTRACT

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome in wastewater has proven to be useful for tracking the trends of virus prevalence within the community. The surveillance also provides precise and early detection of any new and circulating variants, which aids in response to viral outbreaks. Site-specific monitoring of SARS-CoV-2 variants provides valuable information on the prevalence of new or emerging variants in the community. We sequenced the genomic RNA of viruses present in the wastewater samples and analyzed for the prevalence of SARS-CoV-2 variants as well as other respiratory viruses for a period of one year to account for seasonal variations. The samples were collected from the Reno-Sparks metropolitan area on a weekly basis between November 2021 to November 2022. Samples were analyzed to detect the levels of SARS-CoV-2 genomic copies and variants identification. This study confirmed that wastewater monitoring of SARS-CoV-2 variants can be used for community surveillance and early detection of circulating variants and supports wastewater-based epidemiology (WBE) as a complement to clinical respiratory virus testing as a healthcare response effort. Our study showed the persistence of the SARS-CoV-2 virus throughout the year compared to a seasonal presence of other respiratory viruses, implicating SARS-CoV-2's broad genetic diversity and strength to persist and infect susceptible hosts. Through secondary analysis, we further identified antimicrobial resistance (AMR) genes in the same wastewater samples and found WBE to be a feasible tool for community AMR detection and monitoring.

2.
Infect Genet Evol ; 111: 105434, 2023 07.
Article in English | MEDLINE | ID: covidwho-2301622

ABSTRACT

In early 2020, the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the human population quickly developed into a global pandemic. SARS-CoV-2 is the etiological agent of coronavirus disease 2019 (COVID-19) which has a broad range of respiratory illnesses. As the virus circulates, it acquires nucleotide changes. These mutations are potentially due to the inherent differences in the selection pressures within the human population compared to the original zoonotic reservoir of SARS-CoV-2 and formerly naïve humans. The acquired mutations will most likely be neutral, but some may have implications for viral transmission, disease severity, and resistance to therapies or vaccines. This is a follow-up study from our early report (Hartley et al. J Genet Genomics. 01202021;48(1):40-51) which detected a rare variant (nsp12, RdRp P323F) circulating within Nevada in mid 2020 at high frequency. The primary goals of the current study were to determine the phylogenetic relationship of the SARS-CoV-2 genomes within Nevada and to determine if there are any unusual variants within Nevada compared to the current database of SARS-CoV-2 sequences. Whole genome sequencing and analysis of SARS-CoV-2 from 425 positively identified nasopharyngeal/nasal swab specimens were performed from October 2020 to August 2021 to determine any variants that could result in potential escape from current therapeutics. Our analysis focused on nucleotide mutations that generated amino acid variations in the viral Spike (S) protein, Receptor binding domain (RBD), and the RNA-dependent RNA-polymerase (RdRp) complex. The data indicate that SARS-CoV-2 sequences from Nevada did not contain any unusual variants that had not been previously reported. Additionally, we did not detect the previously identified the RdRp P323F variant in any of the samples. This suggests that the rare variant we detected before was only able to circulate because of the stay-at-home orders and semi-isolation experience during the early months of the pandemic. IMPORTANCE: SARS-COV-2 continues to circulate in the human population. In this study, SARS-CoV-2 positive nasopharyngeal/nasal swab samples were used for whole genome sequencing to determine the phylogenetic relationship of SARS-CoV-2 sequences within Nevada from October 2020 to August 2021. The resulting data is being added to a continually growing database of SARS-CoV-2 sequences that will be important for understanding the transmission and evolution of the virus as it spreads around the globe.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/epidemiology , Phylogeny , Nevada , Follow-Up Studies , Mutation , RNA-Dependent RNA Polymerase/genetics , Nucleotides , RNA , Spike Glycoprotein, Coronavirus/genetics
3.
Viruses ; 14(12)2022 11 23.
Article in English | MEDLINE | ID: covidwho-2216889

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. From the onset of the pandemic, rapid antigen tests have quickly proved themselves to be an accurate and accessible diagnostic platform. The initial (and still most commonly used antigen tests) for COVID-19 diagnosis were constructed using monoclonal antibodies (mAbs) specific to severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP). These mAbs are able to bind SARS-CoV-2 NP due to high homology between the two viruses. However, since first being identified in 2019, SARS-CoV-2 has continuously mutated, and a multitude of variants have appeared. These mutations have an elevated risk of leading to possible diagnostic escape when using tests produced with SARS-CoV-derived mAbs. Here, we established a library of 18 mAbs specific to SARS-CoV-2 NP and used two of these mAbs (1CV7 and 1CV14) to generate a prototype antigen-detection lateral flow immunoassay (LFI). A side-by-side analysis of the 1CV7/1CV14 LFI and the commercially available BinaxNOWTM COVID-19 Antigen CARD was performed. Results indicated the 1CV7/1CV14 LFI outperformed the BinaxNOWTM test in the detection of BA.2, BA.2.12.1, and BA.5 Omicron sub-variants when testing remnant RT-PCR positive patient nasopharyngeal swabs diluted in viral transport media.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19 Testing , Pandemics , Sensitivity and Specificity , Immunoassay/methods , Antigens , Antibodies, Monoclonal
4.
Med Microecol ; 14: 100059, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2159551

ABSTRACT

SARS-CoV-2 spread rapidly, causing millions of deaths across the globe. As a result, demand for medical supplies and personal protective equipment (PPE) surged and supplies dwindled. Separate entirely, hospital-acquired infections have become commonplace and challenging to treat. To explore the potential of novel sterilization techniques, this study evaluated the disinfection efficacy of Fathhome's ozone-based, dry-sanitizing device by dose and time response. Inactivation of human pathogens was tested on non-porous (plastic) surfaces. 95.42-100% inactivation was observed across all types of vegetative microorganisms and 27.36% inactivation of bacterial endospores tested, with no residual ozone detectable after completion. These results strongly support the hypothesis that Fathhome's commercial implementation of gas-based disinfection is suitable for rapid decontamination of a wide variety of pathogens on PPE and other industrially relevant materials.

5.
ACS Appl Mater Interfaces ; 14(45): 50463-50474, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2106312

ABSTRACT

SARS-CoV-2 and its variants that continue to emerge have necessitated the implementation of effective disinfection strategies. Developing self-disinfecting surfaces can be a potential route for reducing fomite transmissions of infectious viruses. We show the effectiveness of TiO2 nanotubes (T_NTs) on photocatalytic inactivation of human coronavirus, HCoV-OC43, as well as SARS-CoV-2. T_NTs were synthesized by the anodization process, and their impact on photocatalytic inactivation was evaluated by the detection of residual viral genome copies (quantitative real-time quantitative reverse transcription polymerase chain reaction) and infectious viruses (infectivity assays). T_NTs with different structural morphologies, wall thicknesses, diameters, and lengths were prepared by varying the time and applied potential during anodization. The virucidal efficacy was tested under different UV-C exposure times to understand the photocatalytic reaction's kinetics. We showed that the T_NT presence boosts the inactivation process and demonstrated complete inactivation of SARS-CoV-2 as well as HCoV-OC43 within 30 s of UV-C illumination. The remarkable cyclic stability of these T_NTs was revealed through a reusability experiment. The spectroscopic and electrochemical analyses have been reported to correlate and quantify the effects of the physical features of T_NT with photoactivity. We anticipate that the proposed one-dimensional T_NT will be applicable for studying the surface inactivation of other coronaviruses including SARS-CoV-2 variants due to similarities in their genomic structure.


Subject(s)
COVID-19 , Nanotubes , Humans , SARS-CoV-2 , Nanotubes/chemistry
6.
Sci Rep ; 12(1): 16141, 2022 09 27.
Article in English | MEDLINE | ID: covidwho-2050528

ABSTRACT

Detection of SARS-CoV-2 viral load in wastewater has been highly informative in estimating the approximate number of infected individuals in the surrounding communities. Recent developments in wastewater monitoring to determine community prevalence of COVID-19 further extends into identifying SARS-CoV-2 variants, including those being monitored for having enhanced transmissibility. We sequenced genomic RNA derived from wastewater to determine the variants of coronaviruses circulating in the communities. Wastewater samples were collected from Truckee Meadows Water Reclamation Facility (TMWRF) from November 2020 to June 2021. SARS-CoV-2 variants resulting from wastewater were compared with the variants detected in infected individuals' clinical specimens (nasal/nasopharyngeal swabs) during the same period and found conclusively in agreement. Therefore, wastewater monitoring for SARS-CoV-2 variants in the community is a feasible strategy as a complementary tool to clinical specimen testing in the latter's absence.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , RNA , RNA, Viral/genetics , SARS-CoV-2/genetics , Wastewater
7.
JAMA Netw Open ; 5(8): e2228143, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1999804

ABSTRACT

Importance: Variants of SARS-CoV-2 have sequence variations in the viral genome that may alter the accuracy of rapid diagnostic tests. Objective: To assess the analytical and clinical accuracy of 2 rapid diagnostic tests for detecting SARS-CoV-2 during 3 phases of variants. Design, Setting, and Participants: This diagnostic study included participants aged 18 years or older who reported onset of COVID-19-like symptoms within the prior 5 days and were tested at multiple COVID-19 testing locations in King County, Washington, from February 17, 2021, to January 11, 2022, during 3 distinct phases of SARS-CoV-2 infection (pre-Delta, Delta, and Omicron). Interventions: Two anterior nasal swab specimens were collected from each participant-1 for onsite testing by the SCoV-2 Ag Detect Rapid Self-Test and 1 for reverse transcriptase-polymerase chain reaction (RT-PCR) testing. Main Outcomes and Measures: The analytical limit of detection of the 2 rapid diagnostic tests (SCoV-2 Ag Detect Rapid Self-Test and BinaxNOW COVID-19 Ag Card) was assessed using Omicron (B.1.1.529/BA.1), Delta (B.1.617.2), and a wild-type (USA-WA1/2020) variant. Diagnostic sensitivity and specificity of clinical testing for the rapid antigen tests were compared with that of RT-PCR testing. Results: A total of 802 participants were enrolled (mean [SD] age, 37.3 [13.3] years; 467 [58.2%] female), 424 (52.9%) of whom had not received COVID-19 vaccination and presented a median of 2 days (IQR, 1-3 days) from symptom onset. Overall, no significant differences were found in the analytical limit of detection or clinical diagnostic accuracy of rapid antigen testing across SARS-CoV-2 variants. The estimated limit of detection for both rapid nucleocapsid antigen tests was at or below a 50% tissue culture infectious dose of 62.5, and the positive percent agreement of the SCoV-2 Ag Detect Rapid Self-Test ranged from 81.2% (95% CI, 69.5%-89.9%) to 90.7% (95% CI, 77.9%-97.4%) across the 3 phases of variants. The diagnostic sensitivity increased for nasal swabs with a lower cycle threshold by RT-PCR, which correlates with a higher viral load. Conclusions and Relevance: In this diagnostic study, analytical and clinical performance data demonstrated accuracy of 2 rapid antigen tests among adults with COVID-19 symptoms across 3 phases of SARS-CoV-2 variants. The findings suggest that home-based rapid antigen testing programs may be an important intervention to reduce global SARS-CoV-2 transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines , Female , Humans , Male , SARS-CoV-2/genetics
8.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology ; 36(Suppl 1), 2022.
Article in English | EuropePMC | ID: covidwho-1980605

ABSTRACT

Earlier studies demonstrated that blood 5‐hydroxytryptamine (5‐HT) is elevated in patients with COVID‐19‐associated diarrhea with higher severity of symptoms. We hypothesize that disruption of vectorial Cl transport by 5‐HT may be critical in determining the alveolar flooding and abnormalities in intestinal Cl secretion through stimulation of anoctamin 1(ANO1) Cl channel. Using western blot, immunostaining, and electrophysiology, we characterized the localization of human ANO1 and its stimulation by 5‐HT on Cl secretion in lung and intestinal epithelium. Because calcium‐activated chloride current in human intestinal epithelia remains controversial, we examined the localization of ANO1 in the human terminal ileum and colonic tissue using confocal microscopy. Our results indicated that ANO1 was localized predominantly at the brush‐border membrane and co‐localized with the brush‐border membrane marker villin. ANO1 is not present in goblet cells. The anti‐ANO1 antibody recognized a protein of appropriate size in human colonic tissue. The specificity of the ANO1 antibody was tested by immunoblot analysis of lysates from human colorectal cancer tissues, where it displayed amplified ANO1 protein expression. We next confirmed ANO1‐currents activated by 5‐HT in the Caco‐2 cells by patch‐clamp measurements of whole‐cell current. The application of 100 nM 5‐HT produced a typical outward rectification. CaCCinh‐A01, a specific ANO1 blocker, inhibited the currents. The half‐maximal effective concentration value for the effects of 5‐HT was estimated at 21.8 ± 13.7 nM with a Hill coefficient of 0.89 ± 0.16. These results indicated that 5‐HT evoked calcium‐activated Cl currents through ANO1 channels. ANO1 is expressed in Calu 3 cells. We next confirmed the presence of ANO1 currents activated by 5‐HT in Calu‐3 cells by the Ussing chamber experiments. Serosal addition of 5‐HT produced an immediate and significant increase in Isc in Calu‐3 cells that was inhibited by the ANO1 selective inhibitor T16Ainh‐A01. Finally, we demonstrate that SARS‐CoV2 infection led to enterochromaffin cell hyperplasia in the intestinal epithelium of Syrian Hamster with a possible elevation of 5‐HT, which could explain the severity of symptoms in COVID‐19 associated diarrheal patients. In conclusion, SARS‐CoV2 infection resulted in intestinal enterochromaffin cells hyperplasia that could elevate 5‐HT. Elevated 5‐HT activates luminal ANO1 CaCC in the intestinal and lung epithelium by a mechanism that appears to involve the rise of [Ca2+]i. Our data suggest that 5‐HT may be a critical determinant of the COVID‐19 associated diarrhea and flooding of alveoli that have considerable implications for COVID‐19 therapy.

9.
Catalysts (2073-4344) ; 12(7):N.PAG-N.PAG, 2022.
Article in English | Academic Search Complete | ID: covidwho-1974723

ABSTRACT

There is an immense healthcare challenge and financial pressure due to the COVID-19 pandemic caused by a newly identified human coronavirus, SARS-CoV-2. Effective COVID-19 prevention efforts in healthcare, home, and community settings highlight the need for rapid, efficient, and no-contact SARS-CoV-2 inactivation strategies. Here, we examined the photocatalytic and virucidal activity of the MACOMA™ TiO2 photocatalytic film activated by an UVA-LED-12V-367 nm (MA-717836-1) lamp against the HCoV-OC43, a member of the beta coronaviruses family, like SARS-CoV-2, using quantitative RT-qPCR and virus infectivity assays. The UVA radiation-responsive TiO2 film accelerated virus inactivation (decreased viral titer) compared to the uncoated glass surface when placed at a vertical distance of 1.2 feet (~14 inches) from virus samples for 10, 30, and 60 min. UVA-LED exposure for both 10 and 30 min effectively reduced the viral RNA copies and the infectious virus in samples on TiO2-coated surfaces compared to the control surfaces. Importantly, a 60 min exposure of samples on the TiO2 completely eliminated HCoV-OC43. These results confirmed that the MACOMA™ UVA/TiO2-based disinfection system provides a rapid and complete surface inactivation of tested human coronavirus in a human-safe manner and has great potential for limiting the virus spread in poorly ventilated as well as high-traffic public places. [ FROM AUTHOR] Copyright of Catalysts (2073-4344) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

10.
Cell Insight ; 1(4): 100046, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1906846

ABSTRACT

COVID-19 (Coronavirus Disease 2019) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus-2) continues to pose an international public health threat and thus far, has resulted in greater than 6.4 million deaths worldwide. Vaccines are critical tools to limit COVID-19 spread, but antiviral drug development is an ongoing global priority due to fast-spreading COVID-19 variants that may elude vaccine efficacies. The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is an essential enzyme of viral replication and transcription machinery complex. Therefore, the RdRp is an attractive target for the development of effective anti-COVID-19 therapeutics. In this study, we developed a cell-based assay to determine the enzymatic activity of SARS-CoV-2 RdRp through a luciferase reporter system. The SARS-CoV-2 RdRp reporter assay was validated using known inhibitors of RdRp polymerase, remdesivir along with other anti-virals including ribavirin, penciclovir, rhoifolin, 5'CT, and dasabuvir. Dasabuvir (an FDA-approved drug) exhibited promising RdRp inhibitory activity among these inhibitors. Anti-viral activity of dasabuvir was also tested on the replication of SARS-CoV-2 through infection of Vero E6 cells. Dasabuvir inhibited the replication of SARS-CoV-2, USA-WA1/2020 as well as B.1.617.2 (delta variant) in Vero E6 cells in a dose-dependent manner with EC50 values 9.47 µM and 10.48 µM, for USA-WA1/2020 and B.1.617.2 variants, respectively. Our results suggest that dasabuvir can be further evaluated as a therapeutic drug for COVID-19. Importantly, this system provides a robust, target-specific, and high-throughput screening compatible (z- and z'-factors of >0.5) platforms that will be a valuable tool for screening SARS-CoV-2 RdRp inhibitors.

11.
Pathogens ; 10(3)2021 Mar 14.
Article in English | MEDLINE | ID: covidwho-1136526

ABSTRACT

The pandemic of SARS-CoV-2/COVID-19 was reported in December 2019 in Wuhan, China. Pertaining to its high transmissibility and wide host adaptability, this unique human coronavirus spread across the planet inflicting 115 million people and causing 2.5 million deaths (as of March 3rd, 2021). Limited or negligible pre-existing immunity to multiple SARS-CoV-2 variants has resulted in severe morbidity and mortality worldwide, as well as a record-breaking surge in the use of medical-surgical supplies and personal protective equipment. In response to the global need for effective sterilization techniques, this study evaluated the virucidal efficacy of FATHHOME's self-contained, ozone-based dry-sanitizing device, by dose and time response assessment. We tested inactivation of human coronavirus, HCoV-OC43, a close genetic model of SARS-CoV-2, on porous (N95 filtering facepiece respirator/FFR) and nonporous (glass) surfaces. We started our assays with 20 ppm-10 min ozone exposure, and effectively reduced 99.8% and 99.9% of virus from glass and N95 FFR surfaces, respectively. Importantly, the virus was completely inactivated, below the detection limit (over 6-log10 reduction) with 25 ppm-15 min ozone exposure on both tested surfaces. As expected, a higher ozone exposure (50 ppm-10 min) resulted in faster inactivation of HCoV-OC43 with 100% inactivation from both the surfaces, with no residual ozone present after completion of the 5-min post exposure recapture cycle and no measurable increase in ambient ozone levels. These results confirmed that FATHHOME's device is suitable for rapid decontamination of SARS-CoV-2- from worn items, frequently touched items, and PPE including N95 FFRs, face shields, and other personal items.

12.
J Genet Genomics ; 48(1): 40-51, 2021 01 20.
Article in English | MEDLINE | ID: covidwho-1087048

ABSTRACT

Patients with signs of COVID-19 were tested through diagnostic RT-PCR for SARS-CoV-2 using RNA extracted from the nasopharyngeal/nasal swabs. To determine the variants of SARS-CoV-2 circulating in the state of Nevada, specimens from 200 COVID-19 patients were sequenced through our robust sequencing platform, which enabled sequencing of SARS-CoV-2 from specimens with even very low viral loads, without the need of culture-based amplification. High genome coverage allowed the identification of single and multi-nucleotide variants in SARS-CoV-2 in the community and their phylogenetic relationships with other variants present during the same period of the outbreak. We report the occurrence of a novel mutation at 323aa (314aa of orf1b) of nsp12 (RNA-dependent RNA polymerase) changed to phenylalanine (F) from proline (P), in the first reported isolate of SARS-CoV-2, Wuhan-Hu-1. This 323F variant was present at a very high frequency in Northern Nevada. Structural modeling determined this mutation in the interface domain, which is important for the association of accessory proteins required for the polymerase. In conclusion, we report the introduction of specific SARS-CoV-2 variants at very high frequency in distinct geographic locations, which is important for understanding the evolution and circulation of SARS-CoV-2 variants of public health importance, while it circulates in humans.


Subject(s)
COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Genome, Viral/genetics , Humans , Models, Molecular , Mutation , Nasopharynx/virology , Nevada/epidemiology , Phylogeny , Prevalence , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Workflow
13.
Lancet Infect Dis ; 21(1): 52-58, 2021 01.
Article in English | MEDLINE | ID: covidwho-1059571

ABSTRACT

BACKGROUND: The degree of protective immunity conferred by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently unknown. As such, the possibility of reinfection with SARS-CoV-2 is not well understood. We describe an investigation of two instances of SARS-CoV-2 infection in the same individual. METHODS: A 25-year-old man who was a resident of Washoe County in the US state of Nevada presented to health authorities on two occasions with symptoms of viral infection, once at a community testing event in April, 2020, and a second time to primary care then hospital at the end of May and beginning of June, 2020. Nasopharyngeal swabs were obtained from the patient at each presentation and twice during follow-up. Nucleic acid amplification testing was done to confirm SARS-CoV-2 infection. We did next-generation sequencing of SARS-CoV-2 extracted from nasopharyngeal swabs. Sequence data were assessed by two different bioinformatic methodologies. A short tandem repeat marker was used for fragment analysis to confirm that samples from both infections came from the same individual. FINDINGS: The patient had two positive tests for SARS-CoV-2, the first on April 18, 2020, and the second on June 5, 2020, separated by two negative tests done during follow-up in May, 2020. Genomic analysis of SARS-CoV-2 showed genetically significant differences between each variant associated with each instance of infection. The second infection was symptomatically more severe than the first. INTERPRETATION: Genetic discordance of the two SARS-CoV-2 specimens was greater than could be accounted for by short-term in vivo evolution. These findings suggest that the patient was infected by SARS-CoV-2 on two separate occasions by a genetically distinct virus. Thus, previous exposure to SARS-CoV-2 might not guarantee total immunity in all cases. All individuals, whether previously diagnosed with COVID-19 or not, should take identical precautions to avoid infection with SARS-CoV-2. The implications of reinfections could be relevant for vaccine development and application. FUNDING: Nevada IDEA Network of Biomedical Research, and the National Institute of General Medical Sciences (National Institutes of Health).


Subject(s)
COVID-19/diagnosis , Reinfection/diagnosis , SARS-CoV-2/genetics , Adult , Genome, Viral , Humans , Male , Phylogeny
14.
Viruses ; 13(1)2020 12 24.
Article in English | MEDLINE | ID: covidwho-1042658

ABSTRACT

The newly identified pathogenic human coronavirus, SARS-CoV-2, led to an atypical pneumonia-like severe acute respiratory syndrome (SARS) outbreak called coronavirus disease 2019 (abbreviated as COVID-19). Currently, nearly 77 million cases have been confirmed worldwide with the highest numbers of COVID-19 cases in the United States. Individuals are getting vaccinated with recently approved vaccines, which are highly protective in suppressing COVID-19 symptoms but there will be a long way before the majority of individuals get vaccinated. In the meantime, safety precautions and effective disease control strategies appear to be vital for preventing the virus spread in public places. Due to the longevity of the virus on smooth surfaces, photocatalytic properties of "self-disinfecting/cleaning" surfaces appear to be a promising tool to help guide disinfection policies for controlling SARS-CoV-2 spread in high-traffic areas such as hospitals, grocery stores, airports, schools, and stadiums. Here, we explored the photocatalytic properties of nanosized TiO2 (TNPs) as induced by the UV radiation, towards virus deactivation. Our preliminary results using a close genetic relative of SAR-CoV-2, HCoV-NL63, showed the virucidal efficacy of photoactive TNPs deposited on glass coverslips, as examined by quantitative RT-qPCR and virus infectivity assays. Efforts to extrapolate the underlying concepts described in this study to SARS-CoV-2 are currently underway.


Subject(s)
Disinfection/methods , Metal Nanoparticles/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/radiation effects , Titanium/pharmacology , Animals , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Disease Outbreaks/prevention & control , HEK293 Cells , Humans , Titanium/chemistry , Ultraviolet Rays , Vero Cells , Virus Inactivation/drug effects , Virus Inactivation/radiation effects
15.
Viruses ; 13(1):19, 2021.
Article in English | ScienceDirect | ID: covidwho-984446

ABSTRACT

The newly identified pathogenic human coronavirus, SARS-CoV-2, led to an atypical pneumonia-like severe acute respiratory syndrome (SARS) outbreak called coronavirus disease 2019 (abbreviated as COVID-19). Currently, nearly 77 million cases have been confirmed worldwide with the highest numbers of COVID-19 cases in the United States. Individuals are getting vaccinated with recently approved vaccines, which are highly protective in suppressing COVID-19 symptoms but there will be a long way before the majority of individuals get vaccinated. In the meantime, safety precautions and effective disease control strategies appear to be vital for preventing the virus spread in public places. Due to the longevity of the virus on smooth surfaces, photocatalytic properties of “self-disinfecting/cleaning”surfaces appear to be a promising tool to help guide disinfection policies for controlling SARS-CoV-2 spread in high-traffic areas such as hospitals, grocery stores, airports, schools, and stadiums. Here, we explored the photocatalytic properties of nanosized TiO2 (TNPs) as induced by the UV radiation, towards virus deactivation. Our preliminary results using a close genetic relative of SAR-CoV-2, HCoV-NL63, showed the virucidal efficacy of photoactive TNPs deposited on glass coverslips, as examined by quantitative RT-qPCR and virus infectivity assays. Efforts to extrapolate the underlying concepts described in this study to SARS-CoV-2 are currently underway.

16.
Sensors (Basel) ; 20(20)2020 Oct 17.
Article in English | MEDLINE | ID: covidwho-890401

ABSTRACT

The COronaVIrus Disease (COVID-19) is a newly emerging viral disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rapid increase in the number of COVID-19 cases worldwide led the WHO to declare a pandemic within a few months after the first case of infection. Due to the lack of a prophylactic measure to control the virus infection and spread, early diagnosis and quarantining of infected as well as the asymptomatic individuals are necessary for the containment of this pandemic. However, the current methods for SARS-CoV-2 diagnosis are expensive and time consuming, although some promising and inexpensive technologies are becoming available for emergency use. In this work, we report the synthesis of a cheap, yet highly sensitive, cobalt-functionalized TiO2 nanotubes (Co-TNTs)-based electrochemical sensor for rapid detection of SARS-CoV-2 through sensing the spike (receptor binding domain (RBD)) present on the surface of the virus. A simple, low-cost, and one-step electrochemical anodization route was used for synthesizing TNTs, followed by an incipient wetting method for cobalt functionalization of the TNTs platform, which was connected to a potentiostat for data collection. This sensor specifically detected the S-RBD protein of SARS-CoV-2 even at very low concentration (range of 14 to 1400 nM (nano molar)). Additionally, our sensor showed a linear response in the detection of viral protein over the concentration range. Thus, our Co-TNT sensor is highly effective in detecting SARS-CoV-2 S-RBD protein in approximately 30 s, which can be explored for developing a point of care diagnostics for rapid detection of SARS-CoV-2 in nasal secretions and saliva samples.


Subject(s)
Betacoronavirus/metabolism , Biosensing Techniques/methods , Nanotubes/chemistry , Spike Glycoprotein, Coronavirus/analysis , Titanium/chemistry , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Electrochemical Techniques , Humans , Limit of Detection , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Point-of-Care Systems , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
17.
Sensors ; 20(20):5871, 2020.
Article in English | MDPI | ID: covidwho-875432

ABSTRACT

The COronaVIrus Disease (COVID-19) is a newly emerging viral disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rapid increase in the number of COVID-19 cases worldwide led the WHO to declare a pandemic within a few months after the first case of infection. Due to the lack of a prophylactic measure to control the virus infection and spread, early diagnosis and quarantining of infected as well as the asymptomatic individuals are necessary for the containment of this pandemic. However, the current methods for SARS-CoV-2 diagnosis are expensive and time consuming, although some promising and inexpensive technologies are becoming available for emergency use. In this work, we report the synthesis of a cheap, yet highly sensitive, cobalt-functionalized TiO2 nanotubes (Co-TNTs)-based electrochemical sensor for rapid detection of SARS-CoV-2 through sensing the spike (receptor binding domain (RBD)) present on the surface of the virus. A simple, low-cost, and one-step electrochemical anodization route was used for synthesizing TNTs, followed by an incipient wetting method for cobalt functionalization of the TNTs platform, which was connected to a potentiostat for data collection. This sensor specifically detected the S-RBD protein of SARS-CoV-2 even at very low concentration (range of 14 to 1400 nM (nano molar)). Additionally, our sensor showed a linear response in the detection of viral protein over the concentration range. Thus, our Co-TNT sensor is highly effective in detecting SARS-CoV-2 S-RBD protein in approximately 30 s, which can be explored for developing a point of care diagnostics for rapid detection of SARS-CoV-2 in nasal secretions and saliva samples.

18.
Pathogens ; 9(7)2020 Jul 13.
Article in English | MEDLINE | ID: covidwho-646540

ABSTRACT

SARS-CoV-2 has spread very quickly from its first reported case on 19 January 2020 in the United Stated of America, leading WHO to declare pandemic by 11 March 2020. RNA viruses accumulate mutations following replication and passage in human population, which prompted us to determine the rate and the regions (hotspots) of the viral genome with high rates of mutation. We analyzed the rate of mutation accumulation over a period of 11 weeks (submitted between 19th January to 15 April 2020) in USA SARS-CoV-2 genome. Our analysis identified that majority of the viral genes accumulated mutations, although with varying rates and these included NSP2, NSP3, RdRp, helicase, Spike, ORF3a, ORF8, and Nucleocapsid protein. Sixteen mutations accumulated in Spike protein in which four mutations are located in the receptor binding domain. Intriguingly, we identified a fair number of viral proteins (NSP7, NSP9, NSP10, NSP11, Envelop, ORF6, and ORF7b proteins), which did not accumulate any mutation. Limited changes in these proteins may suggest that they have conserved functions, which are essential for virus propagation. This provides a basis for a better understanding of the genetic variation in SARS-CoV-2 circulating in the US, which could help in identifying potential therapeutic targets for controlling COVID-19.

19.
J Clin Virol ; 129: 104501, 2020 08.
Article in English | MEDLINE | ID: covidwho-592223

ABSTRACT

BACKGROUND: As the demand for laboratory testing for SARS-CoV-2 increases, additional varieties of testing methodologies are being considered. While real time polymerase chain reaction (RT-PCR) has performed as the main method for virus detection, other methods are becoming available, including transcription mediated amplification (TMA). The Hologic Aptima SARS-CoV-2 Assay utilizes TMA as a target amplification mechanism, and it has only recently received Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA). OBJECTIVES: We sought to compare the sensitivity and specificity of the Aptima SARS-CoV-2 Assay to RTPCR as a means of SARS-CoV-2 detection in a diagnostic setting. STUDY DESIGN: We performed a limit-of-detection study (LoD) to assess the analytical sensitivity of TMA and RT-PCR. This preceded a comparison of the methods using previously evaluated clinical specimens (nasopharyngeal swabs) using 116 human specimens tested by both methodologies. Specimens included sixty-one (61) specimens found reactive by real-time PCR, fifty-one (51) found non-reactive, and four (4) deemed inconclusive. RESULTS: The Aptima SARS-CoV-2 Assay showed a markedly higher analytical sensitivity than RT-PCR by LoD study. Evaluation of clinical specimens resulted in fewer inconclusive results by the SARS-CoV-2 assay, leading to potentially higher clinical sensitivity. CONCLUSIONS: Higher analytical sensitivity may explain TMA's ability to ascertain for the presence of SARS-CoV-2 genome in human specimens deemed inconclusive by real-time PCR. TMA provides an effective, highly sensitive means of detection of SARS-CoV-2 in nasopharyngeal specimens.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL